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1. INTRODUCTION

The method of moments (MOM) applied to volume
integral equations has been a common way of solving
for the electromagnetic scattering from highly
inhomogeneous bodies. Many researchers [1] have

experienced difficulties in obtaining an accurate

solution for bodies with a high relative permittivity.

With a revised treatment for the singular dyadic
Green’s function [2] in the integrand of the volume
integral equation, we hope to overcome these
difficulties and obtain a benchmark solution for a
three-dimensional multi-wavelength scatterer with

edges and corners.

Richmond [3],[4], and Livesay and Chen [5] appear
to be the first to use the volume integral equation
for dielectric bodies. Their procedure is based
on volume discretizations of the volume integral
equation with pulse basis functions and point
matching. However, for 3-D problems as well as
for the 2-D problems of TE polarization, substantial
inaccuracies are observed. Recently, Joachimowicz
and Pichot [6] compared the different integral
formulations for 2-D TE scattering problems and
analysed the source of these errors. They

introduced a new integral equation that in~luded




surface integrals to take account of surface charges
at discontinuities. Even though better performance
was obtained, considerable errors can still be

observed.

In this report we are trying to accomplish two
goals: (1) to eliminate the source of errors and
(2) to obtain a benchmark solution to permit
comparisons with the theoretically exact series
solution for 2-D scattering from dielectric cylinders;
and if successful, to obtain a benchmark solution for
the 3-D scattering from a dielectric cube. Initial

progress towards these goals are described.

At first, we believed the inaccuracies of the
solution of the past researchers were probably due
to inaccuracies in computing the highly singular
dyadic Green’s function for the scattering from
dielectric cylinder, and in particular, in their
treatment of the self term. 1In both Richmond and
Chen’s papers [3]-[5], the kernel of the integral
equation is calculated by replacing the square
self cell by a circular disk having the same area
or replacing the volume self cell by a sphere
having the same volume. Thus, our first step was
to perform the self cell integration as accurately

as possible. For the case of scattering from a




dielectric square cylinder, our results indicated
that there is less than 1% difference between
Richmond using the equal area approximation and our
more accurate revised approach. Thus, there appears
no great advantage in using a more accurate

self cell evaluation in computing the bistatic

scattering from the dielectric square cylinders.

In the original pulse basis and point matching
method, the electric field and the dielectric
properties are assumed to be constant in each cell
and the Green’s function is evaluated at the center
of each cell. 1In other words, there is one center
point for each nonself cell calculation. In our
second approach, we increased the number of
integration points of the Green’s function for
each of these cells and checked for convergence.
For TM polarization, our results converged rapidly,
and there is less than 2% difference between
computing each cell contribution of the Green’s
function with one center point and with 240
integration points. However, our results
converged more slowly for the TE case, the
difference between computing with one center point,
25 points and 100 points, as compared with 240

points, was 5%,2% and 1% respectively. Again




the increase in accuracy was not very large.

Our next approach involved performing the
integration over both the self and nonself cells
by changing the area integrals to line integrals.
Making use of Gaussian Legendre quadrature
integration techniques, we can significantly
decrease the total number of integration points
from the number we used for the area integration
and achieve higher accuracy. Our results suggest
that the line integration method proved to be most
accurate method for evaluating the Green’s function
over each cell. The area integration method
required more than 200 integration points to achieve
the same accuracy as 80 integration points with the

line integration method.

One of the criteria for the pulse basis functions
to work is to have cells much smaller than a
wavelength. Since there is no exact series solution
for the square cylinder, the circular cylinder was
used for determining the required cell size. The
analytical series solution for scattering from the
circular cylinder can be easily derived and coded
numerically. We first check the validity of
analytical formulation of the circular cylinder and

accuracy by comparing it with the results which can




be found in many electromagnetic textbooks [7] and
[8]. The internal E and H fields for both TM and
TE cases were computed and inspected to detect any
unusual rapid changes in the fields. With the help
of our exact code for scattering from the circular
cylinders, the results with different cell sizes
in the integral equations can be compared. The
numerical results indicate that a minimal cell
size of 5/10 (where » is the wavelength in

the dielectric material) in the TM case, gives
approximately 2% of error in the far-field
scattering from a long circular cylinder of

radius = 0.3 » and permittivity equal to 3.
Similar accuracy is observed in the TE case for

low values of permittivity.

As mentioned above, three different approaches
have been used to evaluate the Green’s function
over each cell - center point, area integration,
and line integration, for the scattering from
dielectric cylinders. There is practically no
distinction between the three methods in computing
scattering from the dielectric cylinders in the
case of TM polarization. The results are in good
agreement with the exact solution to less than

5% maximum error. However, this is not the case




for TE polarization, when the permittivity is large
or when the size of the circular cylinder is large.
Even though the cell size decreases, better agreement
is needed between the numerical data and exact
solution. The curves tend to converge very slowly

to the exact curve.

One explanation of the deficiency may be due to
the square cell representation of the circular
cylinder. The jagged edges may produce an error.
Tables 1 and 2 show the comparsion between
different cells size for the scattering from a
dielectric circular and square cylinder for er = 3,
radius = 0.3 » (k,a = 1.88), for TM and TE
polarization respectively. Observed that, unlike
the square cylinder case, the results for the
circular cylinder oscillate about the exact
solution as the cell size decreases or the number
of cells per dielectric wavelength increases.
However, the oscillations are quite small. This
suggests that the jagged edges cause minor
oscillations, and are not the main source of the
error. We tried to verify this by computing
the RCS versus k,a of the square and circular
cylinders with large permittivity (er = 10),

where k,is the free space wave number, and 'a’ is




Circular Cylinder Square Cylinder
er= 3, kp,a = 1.C8 er= 3, k,a - 1.88
N A RCS 0 RCS 18¢C RCS " 0 RCS 180
(dB) (dB) (dB) (dB)
5 10 0.39695 19:19377 -2.16554 11.36272
6 12 0.48410 9.94038 -2.21087 11.37733
7 13 0.29716 10 38816 -2.23595 11.38627
8 15 0.32672 10.34977 -2.25133 11.39211
9 17 0.41695 10.16945 -2.26145 11.39614
10 19 0.44676 10.07070 -2.26848 11.39903
11 21 0.43276 10.09018 -2.27357 11.40117
12 23 0.48777 9.97323 -2.277137 11.4028"
13 25 0.38840 10.21299 -2.28030 11.40406
14 27 0.44939 10.10223 -2.28259 11.40507
15 29 0.41067 10.15351 -2.28443 11.40588
Exact Soln. 0.48007 10.02144
Table 1. Comparison between Bistatic scattering of Circular

and Square dielectric Cylinders, TM polarization
using different size of square cells.

* x dielectric wavelength
4 size of square cell
N number of segments per radius.




. . . ]
Circular Cylinder Square Cylinder
er= 3, koa = 1.88 er= 3, kpoa = 1.88
N A, * RCS O RCS 180 RCS O RCS 180
(dB) {dB) (dB) {dB)
) 10 -11.24765 8.97380 -11.40775 10.93251
6 12 -11.039614 8.71287 -11.37207 10.92116
7 13 -12.36419 8.93033 -11.33195 10.91392
8 15 -13.65737 9.12377 -11.29794 10.90898
9 17 -12.52884 8.86450 -11.27067 10.90544
10 19 -12.61856 8.86981 -11.24895 10.90280
11 21 -13.06285 8.90101 -11.23151 10.90077
12 23 -12.26397 8.71944 -11.21733 10.89916
13 25 -13.66110 8.97206 -11.20564 10.89785
14 27 -12.82131 8.97206 -11.19589 10.89678
15 29 -13.62015 8.93140 -11.19541 10.89599
Exact Soln. -13.60743 8.85784

Table 2.

and Square dielectric Cylinders, TE polarization
using different size of square cells.

* 5 dielectric wavelength

A size of square cell

N number of segments per radius.

Comparison between Bistatic scattering of Circular




the radius of the circular cylinder or half-side
length of the square cyli.der. The curves for
different cell sizes agree quite closely up to a
cylinder size of k,a equal to about 1.5 for poth
the square and circular cylinder (see Fig. 70).
Especially notice that the scattering curves of
the dielectric square cylinder strongly separate
as k,a increases beyond 3.0. This result again
indicates that the jagged edge in the circular

cylinder case is not the main source of the error.

Despite our improved computational accuracy, the
method of moments with pulse basis functions and
point matching for bistatic TE scattering from large
cylinders with large permittivities did not give
accurate results. Some authors have suggested that
the volume integral equation solved with pulse basis
functions produces a false surface charge density
{l1]. Using pulse basis functions to represent the
unknown polarization introduces fictitious charge
layers at every cell boundary. Nevertheless, some
researchers have been successful in obtaining
accurate results with more sophisicated techniques,
such as linear basis functions with polygonal cells
{9], polyhedral cells [10], rooftops basis

functions with triangular cells [11}, square cells




[12]), and tetrahedral cells [13]. Still, a serious
drawback of these methods is the large number

of unknowns required per cell.

Since the existing volume integral equation
soived with pulse basis functions does not deal
adequately with surface charge density in the TE
polarization case, we are presently revising the
formulation of the volume integral equation to
retain pulse basis functions and yet avoid the

fictitious charge density problem.

10
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2. EXACT SOLUTION FOR THE CIRCULAR DIELECTRIC CYLINDER

Our first task is to generate a general computer
code for the exact solution of bistatic scattering
* from a lossless dielectric circular cylinder (Fig. 1)

The results of this code are then compared to the

exact solutions found in many electromagnetics
scattering books and papers. We select Ruck’s
Radar Cross Section Handbook [7] and Barber’s
Light Scattering by Particles book [8] as our

reference for their more comprehensive examples.

With our exact code developed, the internal fields
can also be obtained. This is done to see if there is
any abnormality or large variation in magnitude and
phase in the internal fields that requires special

attention or treatment.

The exact solution is then compared to the MOM
solutions using the center point, area and line integral
approaches for evaluating the Green’s function over
the self cells to evaluate the bistatic scattering
from an infinite circular lossless dielectric cylinder.
Finally, we will apply the MOM codes to infinitely

long square lossless dielectric cylinders.

11
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Fig. 1

Scattering from a dielectric cylinder
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2.1 Brief Derivation of Exact Formula

2.1.1 TM Case

_inc * ikx
Let E = z e (1)
E = z E § ¢ a (2)
1l 1z
E = E + E f > a (3)
2 scat inc ‘

From Maxwell’s equation

VX E = iwpH (4)
i ?E
H = 2
¢ wpoogp (5)
1 3E
Hf - r4
ipwup 2§ (6)
Using boundary conditions for E and H at § = a
tan tan
E - E (7)
lz 2z
H = H (8)
lp 2p

13




and letting

x in

E = aJd (k ¢) e < a
1z n;; n n 1f 4 “(9)
x (1) ing
E -{ZtH(kg)-rZJ(kg)}e § > a
2z no OO nieo D (10)
iky ing
H = a J'(k ) e < a
T L §
w (11)
Pl
ik ® (1) ing
H - {z:t H! (k g) + Z:J'(k g)}e y > a
2¢ ns-e0o N (o]
wh {12)
o
we find
k { (k )(lzk ) (l)c )I'(k o))
J H' - H J'
o} n (; n of f f
a -
n
k o) (l)k k (1i )
k J ( H! ( ) - H ( )J ' (k
o) n lg n og ln f n ly
(13)
k J (ke )J” (k e¢) -k J (k ¢)I3"(k ¢)
1 n § n lg on lg n oy
t -
n
k (k o) (l)k k (li )
J H' | ) - H ( YJI' (k
o] n 1f n og ln f n 18
(14)

14




2.1.2 TE Case

_inc © ikx
Let H - z e : (1)
H = z H § <2 (2)
1l 1z
H = H + H f?‘a ) (3)
2 scat inc

Vv X H = —-iweE (4)
1 H
E = 2 4
¢ iwe g (5)
i QH
E = Z
g - 9 L[]
we 5’ (6)
Using boundary conditions for E and H at ¢ = a
tan tan
H - H (7)
1z 2z
E = E (8)
1 2¢

15




and letting

o0 ing
H = b J (k e) e < a
lz n};mn Nt f T(9)
x (1) 2 ing
H = { s H (ke¢e) + J (k ¢)}e > a
2z Z:m nn og ;:w n o? f (10)
ki in
E = ___ b Jr(kg)e § < a
1¢ n n 1
iwe (11)
1
ke ® (1) o in
E =___{Zs H' (kJ)+ZJ'(k f)}e f 2 a
20 s N Profi ¢ B
iwe {12)
o]
we find
k, (1) (1)
-{J(kg)H’ (k g)— H(kg)J’(k (AR
€, n o n o) n o n o
b =
n
k, ) (1) k| (1&
- J JH" (k ¢) - - H ( )J @)
€ n 1S n og € n 05 1f
o} 1
(13)
kj k,
- J (k g)J’ (k g) - - J (k ?)J'(k g)
€, n o n 1 €, n 1 n o
s =
n
- J JH | ) - - H ( )J'(k ¢)
€, n lf n oy €, n of n ly *
(o} 1

(14)
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3. RESULTS FROM THE EXACT CODE

The results for the far field scattering
obtained from the exact solution in Section 2.1
of the dielectric lossless circular cylinder are
compared to the exact solutions from Ruck’s Radar
cross section Handbook [7], (Figs. 2-3) and

Barber’s Computational Methods [8] (Figs. 4-10).

Figs. 2-3 show the normalized scattering cross
section of a circular cylinder with er = 2.56,
pur = 1.0 with varying k,a for vertical polarization
(TM) and perpendicular polarization (TE)
respectively. Figs. 2a and 3a are the exact
solutions from Ruck’s book. Figs. 2b and 3b are
from our simulation. The good agreement confirms

our numerical code for the exact solution.

Figs. 4-5 show the angular scattered intensity
for a circular cylinder with size parameter of 50
and an index of refraction of 1.5 for TM and TE
polarization. The plotting increment is 0.2 degree.
The solutions from Barber’s book are shown in
Figs. 4a and 5a respectively. Agreement with

Barber’s solution is good.

Figs. 6-7 show the internal intensity along the

17
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Internal Intensity of on Infinitely long

circulor cylinder kBa = 28 er =2.25 TM.
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Fig. 2.28 The internal intensity along the 2 axis as a function of r/a for s circular
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isation. The incident wave propagates om left to right. The calcuintion used 400
points. Sample oumerical results are 0.6810 and 7.569 at r/a=—1 and +1, respectively.
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x-axis as a function of r/a for a circular cylinder
with a size parameter of 20 and an index of
refraction 1.5 for TM and TE polarization. The
incident wave propagates from left to right. The
calculation used 400 points. The exact computed
solutions (Figs. 6a-7a) are in excellent agreement

with the reference solutions (Figs. 6b-7b).

Figs. 8-10 show the scattering intensity at 0,
90 and 180 degrees as a function of size parameter
for a circular cylinder with an index refraction
of 1.5 for TM polarization. The calculations used
1001 points. Figs. 8a-10a are the computed
solutions. The agreement with the reference

solutions (Fig. 8b-10b) are excellent.

We can thus conclude that our exact solution
code for the scattering from a long circular

cylinder is working reliably.

22




Internal Intensity of an infinitely long

circulor cylinder . kBo = 28 er «2.25 TE.
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points. Sample numerical results are 1.055 and 3,131 at r/fa==1and +1, respectively

Fig. 7

23




Scattering Intensity for cir. cylinder

at @ degrees, m =1.5, ™ polorization.
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with an index of refraction of 1.5 for TM polarizstion. The calculation used 1001
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Scottering Intensity for cir. cylinder
ot 99 degrees, m =1.5, TM polorizotion,
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Pig. 2.13 Scattered intensity st 90° us o function of size parwmeter for a circular
cylinder with an index of refraction of 1.5 for TM polarisation. The calculation used

1001 points. Sample numerical results are 0.7907, 0.4846, and 1.073 ot size purameters
of 15, 17.5, and 20, respectively.
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Scottering Intenstty for cir. cylinder

at 188 degrees, m =1.5, TM polorizotion.
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Fig. 2.14 Scattered intensity st 180° as a function of sizse parameter for a circular
cylinder with an index of refraction of 1.5 for TM polarisation. The calculation used
1001 points. Sample numerical results sre 2,725, 0.3091, and 2.519 st size parameters
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4. INTERNAL FIELDS

The Internal fields of the dielectric circular
cylinder can be computed using the equations of

Section 2.1 for both the TM and TE cases.

The magnitudes of the E fields across the
diameter with various relative permittivities of
an infinitely long circular dielectric cylinder
are shown in Figs. (11-15)a and the phases in
Figs.(11-15)b. The H fields cases (TE polarization)

are shown in Figs. 16-20.

Fig. 11 shows the normalized internal E field
(TM case) versus distance (r/x) across the diameter
of the cylinder with size parameter k,a = 5
and relative permittivity of 2.56. The calculation
used 400 points in r/ax. The normalized
internal field is defined as |E|/|Emax| or

|H|/|HBmax]| .

Figs. 12-15 show the normalized internal E field
versus distance (r/x) across the cylinder (koa =5)
with relative permittivities = 4,10,20 and 50,
respectively. Similarly, the H fields from TE

polarization are shown in Figs. 16-20.

Figs. 21-30 show the normalized internal field

27
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with various angles (0,45,90,135,180 degrees) and
relative permittivities (2.56,4,10,20,50) as a
function of distance across the radius of the
cylinder for both polarizations. It can be seen
that the internal field at 0 degrees when combined
with the internal field at 180 degrees give the
internal field across the dielctric circular

cylinder (see Figs. 11-20).

The purpose of finding the internal fields of
the dielectric lossless cylinder with different
scattering angles and various permittivities is to
see if the internal field varies unexpectedly
rapidly near the surface of the large dielectric
lossless cylinders. If this were the case, special
treatment near the discontinuity or along the edges
of the cylinder would be necessary, that is, more
cell divisions would be required in our numerical
solution. A standing wave pattern can be observed
from the figures. Nevertheless, there is no
sudden jump nor localization of the internal field
near the rim of the large dielectric lossless
cylinder. Our results indicate that even though
the relative permittivity is large (er=50), the
size of the cylinder is still small (k,a=5) enough

that the internal fields did not accumulate near

33
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the surface. (However, for large cylinders

(kpa = 45), the internal fields do localize near
the surface [8].) Furthermore, the total number of
variations of the internal fields across the
cylinder is consistent with the value of the
relative permittivity. Since there is no
abnormality in the internal fields for the cylinder
size and dielectric constants we considered, no
special treatment was needed in the numerical

solution to take this into account.
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5. COMPARISON BETWEEN EXACT SOLUTIONS AND THE MOM
NUMERICAL SOLUTIONS USING THE AREA AND LINE
INTEGRATION METHODS
The derivation of the area integration method

can be found in Marian Silberstein’s report,

Electromagnetic Scattering from Dielectrics - A

Two-Dimensional Integral Equation Solution (14].

This approach uses the method of moments (MOM)

with pulse basis functions and point matching

to discretize the integral equation into a

linear system of equations which is then solved by

matrix inversion. That is, the electric field was

represented by a constant function within each cell
and the equation was enforced at the cell centers.

To ensure good accuracy, the size of each cell must

be small compared to the dielectric wavelength,

(i.e., the number of cells n per dielectric

wavelength a, should be > 10). For the circular

cylinder, the results are compared to the exact

series solution and are shown in Figs. 31-40.

Figs. 31-37 show the normalized bistatic TE
scattering from a long circular dielectric cylinder
with different relative permittivities and values
of k,a. The number of cells per dielectric
wavelength is set to 10 and the center point

integration method is used. Excellent agreement
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is observed with the exact series solution when
the relative permittivity or size of the cylinder

is small (see Figs. 31-33 and Figs. 35-37).

Figs. 34 shows the TE bistatic scattering from
a circular cylinder versus scattering angles for
k,a = 0.7 and a large relative permittivity of
9.5. As seen from the figure, the MOM solution
tends to deviate from the exact solution for

large relative permittivity.

For TM polarization, the normalized bistatic

scattering from a long dielectric circular cylinder

is shown in the Figs. 38-40. Fig. 38 shows the
normalized bistatic scattering cross sect.ion from
a long circular dielectric cylinder with er = 2.56
and k.,a = 0.7. Figs. 39-40 show tnat even with
large relative permictivities, the agreement
between the computed solution and the reference

solution is good.

The following figures show the comparison
between the exact solution and the integral
equation solution using the center point
inteyration method for a circular cylinder with
varying kj,a. Relative permittivities of 2.56,4,

and 10 are chosen. Both TM anc TE polarization

50
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are considered. We used three different methods of
approximation for evaluating the self cell terms

to compare their efficiency. First, the self

cell term is approximated by using a constant

area with one cente:r point. For case 2, the

number of integration points are increased to 25
points using the same approximation method.
Thirdly, the self cell term is evaluated by using

the line integral method with 80 points.

Figs. 41-43 show the forward scattering from
a circular cylinder versus kg,a for relative
permittivity = 2.56,4 and 10, respectively, for
the TM polarization, the solid curve represents the
exact solutions. The exact solution uses 1200 k,a
points. 1In our numerical computations, the number of
cells per dielectric wavelength is set to 10. Due
to limitations of computer time, only 120 k,a
points are used in our numerical evaluation.
Figs. 44-46 show the back scattering. Good
agreement is obtained between the three different
numerical methods and the exact solution. However,
for er=10, better agreement can be attained if more
k,a points ( N > 120) and the number of cells (n/x)
per dielectric wavelength are increased in the

computation.
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Figs. 47-50 show the forward and back scattering
from the dielectric circular cylinder versus k,a
with relative permittivities of 2.56 and 4
respectively for TE polarization. Good agreement
exists between the different methods (120 k,a
points) and the exact series solution (1200 k,a
points). These is no significant distinction
between the exact solution and the three methods

when the relative permittivity is small.

However, as the permittivity is increased, the
computed solution deviates from the exact solution.
This is especially true for the TE case when the
relative permittivity is increased to 10. Shown
in Fig. 51 is the forward scattering from a long
lossless circular cylinder versus k,a with two
different methods, the single center point area
integral and the line integral method. The number
of segments per dielectric wavelength is set to
15. The curves begin to deviate from the exact
solution (the solid curve) when k,a > 0.5.

Fig. 52 shows the back scattering . Even though,
the two numerical methods produce curves that
differ somewhat, the line integral method for
evaluating the self cell terms deviates less than

the center point area integral method. It is noted
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that a sharp drop occurs at k,a = 1.95 in the solution
with center point area integral method that is not

found in the exact solution or with the line integral.

Figs. 53-54 shows a slight improvement when the
number of cells per dielectric wavelength is
increased. However, the curves seem to converge
more slowly. The closest match is the curve where
the number of cells per dielectric wavelength is
set to 18. The greatest mismatch is found when it
is set to 10. Due to the limitation of computer
time and storage, the maximum size kpa of the
cylinder is set to 1.8 for n/» =18. This gave an

1800 x 1800 matrix.

From Figs. 53 and 54, we select three points to
observe the scattering from the dielectric circular
cylinder versus scattering angles. The three points
are kga = 0.5 (good agreement with exact solution),
1.5 (slight disagreement with exact solution) and
1.7 (poor agreement with exact solution). Figs.
55-57 show the normalized scattering from a lossless
dielectric circular cylinder when er =10, and
kea = 0.5,1.5, 1.7 respectively. The number of
segments per dielectric wavelength is set to 10.

As seen from figures, the curves of scattering

versus angle confirm the agreement at the single
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points. That is, Fig. 55 shows a close match to
the exact solution, and Fig. 56 shows a slight
mismatch from the exact solution, and Fig. 57 shows

a complete mismatch.

The next set of fiqgures (Figs. 58-62) represent
the forward scattering from a long square dielectric
lossless cylinder, with relative permittivities of
2.56,4,and 10 for TM polarization, and 2.56 and 4
for TE polarization. The number of cells per
dielectric wavelength is set to 10 to ensure more
accuracy. As before, three methods of integrating
the Green’s function over the cells are used. The
back scattering is shown in Figs. 63-67. As seen
from the figures, there is no significant difference

between the results of the three methods.

Figs. 68-69 show the TE forward and back
scattering from a dielectric square cylinder
with relative permittivity of 10 for the three
different methods. The number of cells per
dielectric wavelength is set to 10. The total
number of k,a points used is 100. As seen from
these curves, the three methods give results that
vary slightly from each other. The solid curve
represents the line integral approximation of the

cells, the single dotted line curve represents the
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area integral method with one center point. As more
points are added to the area integration over the
cells (e.g., 25 points in our case), the curve tends
to converge to the solid curve represented by the

line integral method which has 80 points.

Fig. 70 shows the back scattering from a circular
cylinder and a square cylinder using three different
cell sizes for TE polarization with er = 10. It can
be seen that decreasing the cell size tends to
produce convergence to the exact solution (solid
curve) for the circular cylinder. However, the
curves converges very slowly. For the square
cylinder, notice that at kja = 3.0 the curves for
two different cell sizes seem to diverge even though
the square boundary matches perfectly, and there
is no jagged edges as in the case of the circular
cylinder. This confirms that the jagged edges of
the circular cylinder are not a large source of

error.
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6. CONCLUSION

The special treatment of the self cells in the
volume integral equation did improve the performance
of the sclution for scattering from dielectric
bodies. However, the improvement was slight and
limited to small scattering bodies. When the
relative permittivity i. -et equal to 10, the total
number of cells needed for TE polarization is
already in the range of 1800 for k,a=1.8. Thus
the size of the scatterer we can hanrdle on our
mainframe computer is limited. Moreover, the curves
from Figs. 68-69 require at least 120 kya points.

It is very time consuming to run the simulation

program 120 times to get the required curve.

One source of the inaccuracies of the solution
is the square-cell approximation of the cross
section of the circular cylinder. However, our
computations indicated that this jagged edges

problem is not a major source of er:or.

The most important reason for the inaccuracies,
as pointed out by Peterson (1], is in the pulse-
basis, point-matching formulation. Using the
pulse basis functions introduces fictitious charge

layers at every cell boundary with resulting
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numerical error. This error tends to increase as

the relative permittivity increases. However, with

a new formulation of the volume integral equation
which deals with the surface charge density, we hope
to overcome these inaccuracies and obtain a benchmark
solution for multi-wavelength dielectric scatterers
using convenient pulse basis functions. Finally,
making use of the symmetry of the matrices and
converting to Toeplitz or tridiagonal matrices will
ensure faster computing time and less storage

requirements.
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